Generalized MICZ-Kepler system, duality, polynomial, and deformed oscillator algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Micz - Kepler Problems and Unitary Highest Weight

For each integer n ≥ 2, we demonstrate that a 2n-dimensional generalized MICZ-Kepler problem with magmatic charge μ = 0 or 1/2 has an Spin(2, 2n+ 1) dynamical symmetry which extends the manifest Spin(2n) symmetry. The Hilbert space of bound states is shown to form a unitary highest weight Spin(2, 2n+1)-module which occurs at the first reduction point in the Enright-Howe-Wallach classification d...

متن کامل

MICZ-Kepler problems in all dimensions

The Kepler problem is a physical problem about two bodies which attract each other by a force proportional to the inverse square of the distance. The MICZ-Kepler problems are its natural cousins and have been previously generalized from dimension three to dimension five. In this paper, we construct and analyze the (quantum) MICZ-Kepler problems in all dimensions higher than two.

متن کامل

Fractional Supersymmetric Quantum Mechanics, Topological Invariants and Generalized Deformed Oscillator Algebras

Fractional supersymmetric quantum mechanics of order λ is realized in terms of the generators of a generalized deformed oscillator algebra and a Zλgrading structure is imposed on the Fock space of the latter. This realization is shown to be fully reducible with the irreducible components providing λ sets of minimally bosonized operators corresponding to both unbroken and broken cases. It also f...

متن کامل

Irreducibility and Compositeness in q-Deformed Harmonic Oscillator Algebras

q-Deformed harmonic oscillator algebra for real and root of unity values of the deformation parameter is discussed by using an extension of the number concept proposed by Gauss, namely the Q-numbers. A study of the reducibility of the Fock space representation which explores the properties of the Gauss polynomials is presented. When the deformation parameter is a root of unity, an interesting r...

متن کامل

Orthogonal Polynomials and Generalized Oscillator Algebras

For any orthogonal polynomials system on real line we construct an appropriate oscillator algebra such that the polynomials make up the eigenfunctions system of the oscillator hamiltonian. The general scheme is divided into two types: a symmetric scheme and a non-symmetric scheme. The general approach is illustrated by the examples of the classical orthogonal polynomials: Hermite, Jacobi and La...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2010

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.3496900